18 research outputs found

    Successive modification of polydentate complexes gives access to planar carbon-and nitrogen-based ligands

    Get PDF
    以碳和氮为键合原子的多齿螯合物是配合物家族中非常重要的一类。具有更高齿数的平面构型NC螯合物实例相对较少,代表性的例子为四齿金属碳卟啉类化合物,这类螯合物以其独特的结构和丰富的物理化学性质引起广泛关注。然而平面五齿、六齿的NC螯合物由于几何构型“拥挤”导致合成难度高,该工作从含三元环内金属卡宾结构的CCCC型碳龙配合物出发,利用经典有机反应(炔烃对金属卡宾的插入反应),成功地实现了CCCCN/NCCCN型平面五齿螯合物的合成。这一研究为高配位型螯合物的合成提供了新思路并为平面五齿螯合物家族添加新成员。特别是,这些高配位型螯合物在可见光和近红外区域均有较好的吸收,表现出良好的光声成像、光热转换及声动力学性能。 该研究工作在张弘教授指导下完成,第一作者为iChEM博士后周小茜。该工作充分体现了多学科协同研究优势:相关化合物的合成、表征及理论计算工作由周小茜博士完成;声动力学性能研究由厦门大学公共卫生学院庞鑫博士及刘刚教授完成;光声成像研究由厦门大学公共卫生学院聂立铭教授完成。iChEM fellow卓庆德博士、博士生卓凯玥、陈志昕参与了部分实验工作。夏海平教授、香港科技大学林振阳教授和南京大学朱从青教授对研究工作给予了大力支持。【Abstract】Polydentate complexes containing combinations of nitrogen and carbon (N and C) ligating atoms are among the most fundamental and ubiquitous molecules in coordination chemistry, yet the formation of such complexes with planar high-coordinate N/C sites remains challenging. Herein, we demonstrate an efficient route to access related complexes with tetradentate CCCN and pentadentate CCCCN and NCCCN cores by successive modification of the coordinating atoms in complexes with a CCCC core. Combined experimental and computational studies reveal that the rich reactivity of metal-carbon bonds and the inherent aromaticity of the metallacyclic skeletons play key roles in these transformations. This strategy addresses the paucity of synthetic approaches to mixed N/C planar pentadentate chelating species and provides valuable insights into the synthesis of carbon-based high-coordinate complexes. Furthermore, the resulting complexes are the examples of organometallic species with combined photoacoustic, photothermal, and sonodynamic properties, which makes them promising for application in related areas.This research was supported by the National Natural Science Foundation of China (Nos. 21572185, 21561162001, and 81571744), the Research Grants Council of Hong Kong (N_HKUST603/15), the Excellent Youth Foundation of Fujian Scientific Committee (2018J06024), and the Fundamental Research Funds for the Central Universities (20720170065).该工作得到国家自然科学基金委、香港研究资助局、福建省自然科学基金、厦门大学校长基金的资助

    Characterization and Expression Analysis of Insulin Growth Factor Binding Proteins (IGFBPs) in Pacific White Shrimp Litopenaeus vannamei

    No full text
    The insulin signaling (IIS) pathway plays an important role in the metabolism, growth, development, reproduction, and longevity of an organism. As a key member of the IIS pathway, insulin-like growth factor binding proteins (IGFBPs) are widely distributed a family in invertebrates and vertebrates that are critical in various aspects of physiology. As an important mariculture species, the growth of Pacific white shrimp, Litopenaeus vannamei, is one of the most concerning characteristics in this area of study. In this study, we identified three IGFBP genes in the genome of L. vannamei and analyzed their gene structures, phylogenetics, and expression profiles. LvIGFBP1 was found to contain three domains (the insulin growth factor binding (IB) domain, the Kazal-type serine proteinase inhibitor (Kazal) domain, and the immunoglobulin C-2 (IGc2) domain), while LvIGFBP2 and LvIGFBP3 only contained a single IB domain. LvIGFBP1 exhibited high expression in most tissues and different developmental stages, while LvIGFBP2 and LvIGFBP3 were only slightly expressed in hemocytes. The RNA interference of LvIGFBP1 resulted in a significantly smaller increment of body weight than that of control groups. These results will improve our understanding of the conservative structure and function of IGFBPs and show potential applications for the growth of shrimp

    Outbreak response intervention models of vaccine-preventable diseases in humans and foot-and- mouth disease in livestock : a protocol for a systematic review

    Get PDF
    CITATION: Azam, J. M., et al. 2020. Outbreak response intervention models of vaccine-preventable diseases in humans and foot-and- mouth disease in livestock : a protocol for a systematic review. BMJ Open, 10:e036172, doi:10.1136/bmjopen-2019-036172The original publication is available at https://bmjopen.bmj.com/Publication of this article was funded by the Stellenbosch University Open Access FundIntroduction Outbreaks of vaccine-preventable diseases continue to threaten public health, despite the proven effectiveness of vaccines. Interventions such as vaccination, social distancing and palliative care are usually implemented, either individually or in combination, to control these outbreaks. Mathematical models are often used to assess the impact of these interventions and for supporting outbreak response decision making. The objectives of this systematic review, which covers all human vaccine-preventable diseases, are to determine the relative impact of vaccination compared with other outbreak interventions, and to ascertain the temporal trends in the use of modelling in outbreak response decision making. We will also identify gaps and opportunities for future research through a comparison with the foot-and- mouth disease outbreak response modelling literature, which has good examples of the use of modelling to inform outbreak response intervention decision making. Methods and analysis We searched on PubMed, Scopus, Web of Science, Google Scholar and some preprint servers from the start of indexing to 15 January 2020. Inclusion: modelling studies, published in English, that use a mechanistic approach to evaluate the impact of an outbreak intervention. Exclusion: reviews, and studies that do not describe or use mechanistic models or do not describe an outbreak. We will extract data from the included studies such as their objectives, model types and composition, and conclusions on the impact of the intervention. We will ascertain the impact of models on outbreak response decision making through visualisation of time trends in the use of the models. We will also present our results in narrative style. Ethics and dissemination This systematic review will not require any ethics approval since it only involves scientific articles. The review will be disseminated in a peer-reviewed journal and at various conferences fitting its scopehttps://bmjopen.bmj.com/content/10/10/e036172Publisher's versio

    A Novel Method for Accurate Quantification of Split Glomerular Filtration Rate Using Combination of Tc-99m-DTPA Renal Dynamic Imaging and Its Plasma Clearance

    No full text
    Purpose. To precisely quantify split glomerular filtration rate by Tc-99m-DTPA renal dynamic imaging and plasma clearance in order to increase its consistency among doctors. Methods. Tc-99m-DTPA renal dynamic imaging was performed according to the conventional radionuclide renal dynamic imaging by five double-blinded doctors independently and automatically calculated split GFR, namely, gGFR. Moreover, the conventional radionuclide renal dynamic imaging was assessed to only outline the kidney, blank background, and automatically calculated split GFR, gGFR′. The total GFR value of patients, tGFR, was obtained by the double-plasma method. According to the formula, Precise GFR pGFR=gGFR′/gGFR′+gGFR′×tGFR. The precise GFR value of the divided kidney, pGFR, was calculated. The Kendall’s W test was used to compare the consistency of gGFR and pGFR drawn by five physicians. Results. According to Kendall’s W consistency test, Kendall’s coefficient of concordance was 0.834, p=0.0001 using conventional method. The same five doctors used blank background again and the same standard Gates method to draw the kidneys, which automatically calculated gGFR′. Using input formula, the pGFR was calculated and Kendall’s W consistency test (Kendall’s coefficient of concordance=0.956, p=0.0001). Conclusion. The combination of Tc-99m-DTPA renal dynamic imaging combined with the double-plasma method could achieve accurate split GFR, and because of the omission of influence factors, the consistency of pGFR obtained by different doctors using this method was significantly higher than that of conventional Tc-99m-DTPA renal dynamic imaging

    Stable Colonization of Orally Administered Lactobacillus casei SY13 Alters the Gut Microbiota

    No full text
    The gut microbiota plays an important role in intestinal health. Probiotics such as Lactobacillus are known to regulate gut microbes and prevent diseases. However, most of them are unable to colonize their stability in hosts’ intestinal tracts. In this study, we investigated the ability of Lactobacillus casei SY13 (SY13) to colonize the intestinal tract of BALB/c mice, after its oral administration for a short-term (once for a day) and long-term (once daily for 27 days) duration. Furthermore, we also evaluated the influence of its administration on the gut microbial structure and diversity in mice. Male BALB/c mice were gavaged with 108 colony-forming units (CFU) of SY13, and TaqMan-MGB probe and Illumina MiSeq sequencing were performed to assess the colonization ability and bacterial community structure in the cecum contents. The results showed that long-term treatment with SY13 enhanced its ability to form a colony in the intestine tract in contrast to the short-term treatment group, whose colony was retained for only 3 days. Oral administration of SY13 also significantly enhanced the gut microbial diversity. Short-term treatment with SY13 (SSY13) elevated Firmicutes and diminished Bacteroidetes phyla compared with long-term treatment (LSY13) and controls. The findings laid the foundation for the study of probiotic colonization ability and improvement of microbiota for the prevention of gut diseases

    Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example

    Get PDF
    During an infectious disease outbreak, biases in the data and complexities of the underlying dynamics pose significant challenges in mathematically modelling the outbreak and designing policy. Motivated by the ongoing response to COVID-19, we provide a toolkit of statistical and mathematical models beyond the simple SIR-type differential equation models for analysing the early stages of an outbreak and assessing interventions. In particular, we focus on parameter estimation in the presence of known biases in the data, and the effect of non-pharmaceutical interventions in enclosed subpopulations, such as households and care homes. We illustrate these methods by applying them to the COVID-19 pandemic
    corecore